skip to main content


Search for: All records

Creators/Authors contains: "D’Odorico, Paolo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Agricultural transformations have significantly contributed to the global market’s year-round supply of capital-intensive greenhouse-grown crops. For instance, berry production in México is increasingly relying on greenhouse systems to meet the growing demand of international markets, particularly in the USA. It is still unclear to what extent these transformations are related to land tenure, as data on greenhouse distribution often do not exist, are incomplete, or lack spatial resolution. This paper presents a support vector machine learning algorithm tool to map greenhouse expansion using satellite images. The tool is applied to the major berry-growing region of Michoacán, México. Here agricultural areas are transforming to satisfy foreign demand for berries, altering local land and water resource use patterns. We use this tool and a unique land tenure dataset to investigate (a) the spatially explicit extent to which high-input commercial agriculture (mainly the production of berries) has expanded in this region since 1989; and (b) the extent to which smallholder ( ejidal ) land has been incorporated into the highly capitalized agro-export sector. We combine a national dataset on ejidal land (which includes both communal and parcel land) with geospatial agricultural data to quantify the land-use changes in six municipalities in the berry-growing region of Michoacán between 1989 and 2021. We find that the development of the greenhouse berry boom can be quantified and shown with spatially-explicit detail, growing from zero to over 9,500 ha over the period, using almost one-quarter of all regional agricultural land in 2020. We further find that the capital-intensive market-oriented berry industry has been widely integrated into smallholder ejidal lands, so much so that over half of greenhouses are found there. 
    more » « less
  2. Abstract The ongoing agrarian transition from smallholder farming to large-scale commercial agriculture promoted by transnational large-scale land acquisitions (LSLAs) often aims to increase crop yields through the expansion of irrigation. LSLAs are playing an increasingly prominent role in this transition. Yet it remains unknown whether foreign LSLAs by agribusinesses target areas based on specific hydrological conditions and whether these investments compete with the water needs of existing local users. Here we combine process-based crop and hydrological modelling, agricultural statistics, and georeferenced information on individual transnational LSLAs to evaluate emergence of water scarcity associated with LSLAs. While conditions of blue water scarcity already existed prior to land acquisitions, these deals substantially exacerbate blue water scarcity through both the adoption of water-intensive crops and the expansion of irrigated cultivation. These effects lead to new rival water uses in 105 of the 160 studied LSLAs (67% of the acquired land). Combined with our findings that investors target land with preferential access to surface and groundwater resources to support irrigation, this suggests that LSLAs often appropriate water resources to the detriment of local users. 
    more » « less
  3. null (Ed.)
    Abstract The spatial pattern of vegetation patchiness may follow universal characteristic rules when the system is close to critical transitions between alternative states, which improves the anticipation of ecosystem-level state changes which are currently difficult to detect in real systems. However, the spatial patterning of vegetation patches in temperature-driven ecosystems have not been investigated yet. Here, using high-resolution imagery from 1972 to 2013 and a stochastic cellular automata model, we show that in a North American coastal ecosystem where woody plant encroachment has been happening, the size distribution of woody patches follows a power law when the system approaches a critical transition, which is sustained by the local positive feedbacks between vegetation and the surrounding microclimate. Therefore, the observed power law distribution of woody vegetation patchiness may be suggestive of critical transitions associated with temperature-driven woody plant encroachment in coastal and potentially other ecosystems. 
    more » « less
  4. Abstract

    Despite the growing interest in predicting global and regional trends in vegetation productivity in response to a changing climate, changes in water constraint on vegetation productivity (i.e., water limitations on vegetation growth) remain poorly understood. Here we conduct a comprehensive evaluation of changes in water constraint on vegetation growth in the extratropical Northern Hemisphere between 1982 and 2015. We document a significant increase in vegetation water constraint over this period. Remarkably divergent trends were found with vegetation water deficit areas significantly expanding, and water surplus areas significantly shrinking. The increase in water constraints associated with water deficit was also consistent with a decreasing response time to water scarcity, suggesting a stronger susceptibility of vegetation to drought. We also observed shortened water surplus period for water surplus areas, suggesting a shortened exposure to water surplus associated with humid conditions. These observed changes were found to be attributable to trends in temperature, solar radiation, precipitation, and atmospheric CO2. Our findings highlight the need for a more explicit consideration of the influence of water constraints on regional and global vegetation under a warming climate.

     
    more » « less
  5. Abstract

    The ongoing agrarian transition from small-holder farming to large-scale commercial agriculture is reshaping systems of production and human well-being in many regions. A fundamental part of this global transition is manifested in large-scale land acquisitions (LSLAs) by agribusinesses. Its energy implications, however, remain poorly understood. Here, we assess the multi-dimensional changes in fossil-fuel-based energy demand resulting from this agrarian transition. We focus on LSLAs by comparing two scenarios of low-input and high-input agricultural practices, exemplifying systems of production in place before and after the agrarian transition. A shift to high-input crop production requires industrial fertilizer application, mechanization of farming practices and irrigation, which increases by ~5 times fossil-fuel-based energy consumption compared to low-input agriculture. Given the high energy and carbon footprints of LSLAs and concerns over local energy access, our analysis highlights the need for an approach that prioritizes local resource access and incorporates energy-intensity analyses in land use governance.

     
    more » « less
  6. Foreign investors have acquired approximately 90 million hectares of land for agriculture over the past two decades. The effects of these investments on local food security remain unknown. While additional cropland and intensified agriculture could potentially increase crop production, preferential targeting of prime agricultural land and transitions toward export-bound crops might affect local access to nutritious foods. We test these hypotheses in a global systematic analysis of the food security implications of existing land concessions. We combine agricultural, remote sensing, and household survey data (available in 11 sub-Saharan African countries) with georeferenced information on 160 land acquisitions in 39 countries. We find that the intended changes in cultivated crop types generally imply transitions toward energy-rich, but nutrient-poor, crops that are predominantly destined for export markets. Specific impacts on food production and access vary substantially across regions. Deals likely have little effect on food security in eastern Europe and Latin America, where they predominantly occur within agricultural areas with current export-oriented crops, and where agriculture would have both expanded and intensified regardless of the land deals. This contrasts with Asia and sub-Saharan Africa, where deals are associated with both an expansion and intensification (in Asia) of crop production. Deals in these regions also shift production away from local staples and coincide with a gradually decreasing dietary diversity among the surveyed households in sub-Saharan Africa. Together, these findings point to a paradox, where land deals can simultaneously increase crop production and threaten local food security.

     
    more » « less